Temporal developments of longitudinal connectivity: The perspective of potamodromous fish

Johannes Kowal, Gertrud Haidvogl, Johannes Schützenhofer, Andrea Funk, Thomas Hein

johannes.kowal@boku.ac.at

Introduction

Several potamodromous fish species are highly mobile (e.g. spawning migrations)

Research questions:

- How has longitudinal connectivity developed **historically**?
- Effect of **dam removals** and **fish pass** installations?
- When did longitudinal connectivity reach its **lowest point**?

The nase (Chondrostoma nasus)

- Spawning migration in March May
- Rheophilic gravel spawner
- Individuals found to migrate up to 300km

Methods - Habitat availability

- Water surface area as a proxy for the relative amount of available habitat in each river reach
- Wetted width estimated based on 10 measurements per stream order

Water surface area = $L \ 10^{(0.27 S)}$

- L = reach length [m]
- s = stream order

Methods - Habitat suitability

- Habitat suitability according to
 Fish Index Austria (FIA)
 (Haunschmid et al. 2006)
- Three species specific types of occurrence:
 - Dominant
 - Sub-Dominant
 - Rare
- **Probability of occurrence** as proxy for habitat suitability

Occurence Chondrostoma nasus

Methods - Mobility

- Mobility according to **leptokurtic dispersal** function
- Function fitted according to Steinmann et al. 1937 (study conducted prior to the construction of hydropower plants in the Austrian Danube)
- Indication of a static and highly mobile fraction in populations

Methods – Barrier data and passability

Dataset on 512 barriers (Austrian register for water uses):

- Year of construction approval
- Has a fish pass been installed?
- Year when the construction of the fish pass was approved

Barrier passability based on Noonan et al. (2011):

Direction	Fish pass YES	Fish pass NO
	30 %	0%
	60 %	30 %

Free Flow Conference 2024

Johannes Kowal

Methods - Index calculations (Baldan et. al. 2022)

$$w_j = L \ 10^{(0.27 S)} P$$

$$c_{ij} = \prod_{m=1}^{k} p_m$$

 p_m = Passability barrier m

Results – Reach connectivity index (RCI)

Results – Reach connectivity index (RCI)

Results – Catchment connectivity index (CCI)

Conclusion and outlook

- Mills and Woodmills: ~19% connectivity loss before 1900
- Hydropower: ~39% connectivity loss between 1940 until 1990
- Fish passes/barrier removal: ~10% connectivity gain since 1990
- Increased **barrier passability** could substantially increase connectivity

Follow-up research questions:

- How are connectivity changes affecting potamodromous fish populations?
- Can we reconstruct historic populations trends based on connectivity changes?
- How much connectivity do we need (management)?

Free Flow Conference 2024

Johannes Kowal

Methods - Habitat suitability

- Habitat suitability according to
 Fish Index Austria (FIA)
 (Haunschmid et al. 2006)
- Three species specific types of occurrence:
 - Dominant
 - Sub-Dominant
 - Rare
- **Probability of occurrence** as proxy for habitat suitability

