An Archimedes screw threesome: A study evaluating the fish friendliness of three Archimedes screw variants

David Buysse (1), Sarah Broos (1), Stijn Bruneel (1), Ine Pauwels (1), Pieterjan Verhelst (1), Lore Vandamme (1), Johan Coeck (1), Gert Toming (2), Jeffrey Tuhtan (2)

1 - INBO Research Institute Nature and Forest, Brussels, Belgium. 2 - Tallinn University of Technology, Tallinn, Estonia

RESEARCH INSTITUTE

NATURE AND FOREST

Flanders

To pump or not to pump?

- > Pumps, screw pumps in particular, are used worldwide to transport water
 - ightarrow for flood control,
 - ightarrow irrigation,
 - \rightarrow and water provisioning
- Due to
 - \rightarrow the increase in salinization,
 - \rightarrow the occurrence of droughts,
 - \rightarrow and the intensity of heavy precipitation events the need for pumps is unfortunately increasing

RESEARCH INSTITUTE

NATURE AND FOREST

 Thus, it is unlikely that pumping stations will be removed any time soon.

©Consorzio di Bonifica Pianura di Ferrara

©Consorzio di Bonifica Pianura di Ferrara

To pump or not to pump?

- Pumping installations will remain a constant threat to migrating fish as they block or hinder:
 - \rightarrow Upstream fish migration
 - \rightarrow Downstream fish migration

Pumping stations block upstream migration

Pumping stations hinder and pose safety issues for downstream fish migration

C R I T I C A L L Y ENDANGERED SPECIES

©VLIZ – Steve Bridger

Research question:

What's the fish safety of 3 different screw types?

Image © 2024 Airbus Data SIO, NOAA, U.S. Navy, NGA, GEBCO

(0)

Google Ear

Flanders State of the Art

1985

2

RESEARCH INSTITUTE

NATURE AND FOREST

Archimedes screw types

TAL TECH

Archimedes screw types

Open screw

RESEARCH INSTITUTE

NATURE AND FOREST

TECH

Closed screw

Methods

Scenario's

Closed screw

Open screw

Open screw with rubber strips

Scenario 1: maximum rotation speed (100% or 29 rpm) Scenario 2: reduced rotation speed (65% or 19 rpm) Scenario 3: maximum rotation speed (100% or 23 rpm) Scenario 4: reduced rotation speed (65% or 15 rpm) Scenario 5: maximum rotation speed (100% or 23 rpm) Scenario 6: reduced rotation speed (65% or 15 rpm)

2022

2021

RESEARCH INSTITUTE

NATURE AND FOREST

1. Live fish tests

2. BDS sensors

Flanders

State of the Art

Pump and research setup Fish pens Albert canal Eel (farmed) Roach downstream Net Fyke net Pomp cellar Archimedes Archimedes Archimedes Archimedes Screw Screw Hydrodynamic with Hydrodynamic Hydrodynamic with Hydrodynamic Screws closed screw screw screw closed screw housing housing

Trash racks

RIVER SCHIJN

upstream

Flow

RESEARCH INSTITUTE

NATURE AND FOREST

Sample sizes

- Based on a power analyses 'sample size' was calculated
 - \rightarrow 5% fish safety norm
 - \rightarrow 200 to 300 individuals / scenario
 - \rightarrow We used the minimal number of 200 ind. / scenario
 - \rightarrow First trial: 50 ind.
 - If mortality > 20% → STOP
 - If mortality < 20% \rightarrow remaining 150 ind. Were used
 - \rightarrow A control group / scenario
 - \rightarrow 50 ind.

Determination of injuries

- ▶ NEN guideline 8775
 - ightarrow Injury classes ightarrow subcategories + description

	Inju	ry class	Category	Description
	1.			Healthy, undamaged fish
- 227	2.			Slightly injured fish
			2.1	Red and/or damaged eyes
			2.2	Red and/or damaged fins
			2.3	Light scratches, bruises and/or scale loss <20%
	3.			Heavily (terminal) injured fish
			3.1	Significant scale loss >20%
Flanders State of the Art		TAL	3.2	Cuts, cut through, severed body parts
			3.3	Breuken

Results

1. Live fish tests

Length frequency distribution Roach (Rutilus rutilus)

Length (mm)

RESEARCH INSTITUTE

NATURE AND FOREST

Number

Injury rate for roach

Photo: Rollin Verlinden / Vilda

Survival rate of roach

RESEARCH INSTITUTE

NATURE AND FOREST

Survival rate

TECH

Examples of roach injuries

RESEARCH INSTITUTE

NATURE AND FOREST

TECH

Determination of injuries

Flanders

State of the Art

Photo database with individual code

Photo's: INBO

Cause of injuries

• It is likely that the observed injuries are mainly caused by 'pinching'

Length frequency distribution for European eel (Anguilla anguilla)

TECH

RESEARCH INSTITUTE

NATURE AND FOREST

Flanders

State of the Art

 Image: Normal State

 Image: Normal State

 Image: Normal State

Photo: Rollin Verlinden / Vilda

Injury rate eel

Injury rate

TAL TECH

RESEARCH INSTITUTE

NATURE AND FOREST

Survival rate of eel

RESEARCH INSTITUTE

NATURE AND FOREST

Photo: Rollin Verlinden / Vilda

Survival rate

TECH

Examples of eel injuries

Determination of injuries > Photo database with individual code

TECH

Cause of injuries

• It is likely that the observed injuries are mainly caused by 'pinching'

Vijzel

• To measure the physical conditions during pump passage

2. BDS sensors

RESEARCH INSTITUTE NATURE AND FOREST

- The BDS is an underwater sensor that measures
 - \rightarrow the total water pressure,
 - \rightarrow linear acceleration,
 - ightarrow rotation rate,
 - \rightarrow magnetic field intensity,
 - \rightarrow and absolute orientation (roll, pitch, and yaw angles)
- identify exposure to events such as decompression, collisions, and severe turbulence
 - Taltech Centre for Biorobotics

BDS sensor passage = a chaotic event

TECH

Time (s)

BDS sensor passage = chaotic event

Time (s)

Pressure (kPa)

BDS sensor passage = chaotic event

Pressure (kPa)

Flanders

State of the Art

BDS sensor passage through an axial flow pump

BDS sensor passage = chaotic event

Flanders

State of the Art

BDS sensor passage = importance of the surroundings

BDS sensor passage = importance of the surroundings

BDS sensor passage = importance of the surroundings

TECH

State of the Art

NATURE AND FOREST

TECH

RESEARCH INSTITUTE

NATURE AND FOREST

- The FB sensors showed similar pressure patterns as BDS
 - ightarrow a chaotic events in the screw
 - \rightarrow and a consistent pressure peak at the exit of the screw
 - $\rightarrow\,$ corresponding to the fish falling into the pump cellar.
- As the FB measurements gave similar results as the BDS, they are not discussed further

RESEARCH INSTITUTE NATURE AND FOREST

FB sensors: Variable passage time

FB sensors: Variable passage time

Sensor evaluations

• No extreme pressure changes were measured in the screws

- \rightarrow no external signs of barotrauma
- \rightarrow unlikely that sudden decompression is a main source of injury at the three screw types
- It is likely that the observed injuries are mainly caused by 'pinching'
- Importance of the surroundings

Conclusions

Take home message

- **CLOSED SCREWS**: provides safest passage \rightarrow NO PINCHING INJURIES
- ► OPEN SCREWS WITH RUBBER STRIPS: a good alternative → REDUCES PINCHING INJURIES
- OPEN SCREWS: cause biologically significant damage to roach and eel

Importance of surroundings

Take home message

- **CLOSED SCREWS**: provides safest passage \rightarrow NO PINCHING INJURIES
- ► OPEN SCREWS WITH RUBBER STRIPS: a good alternative → REDUCES PINCHING INJURIES
- OPEN SCREWS: cause biologically significant damage to roach and eel

<u>Screw type</u>	<u>Rotation speed</u> (rpm)	Eel survival rate (%)	<u>Roach survival rate (%)</u>
Closed screw	19*	95	83*
	29	96	93
Opens	15	95	93
screw rubber strips	23	95	91
Open	15	94	82
screw	23	87	70

That's all folks !

an an an the

©Pepe Brix