

A method for fish metapopulation connectivity evaluation and barrier removal optimization

Amaia A. Rodeles, Lide de Izeta, David Galicia, María Morán-Luis, Alexia M. González-Ferreras, Francisco J. Peñas, José Barquín, Rafael Miranda

+D+rtor sustainable de

Plan de Recuper Transformación y Resiliencia Financiado por la Unión Europe NextGenerationEU

INTRODUCTION

Dams and weirs affect the movement of water, sediment, nutrient and organisms through the river.

Impacts on **diadromous** fish migration are well known.

The impact of dams in the connectivity of fish metapopulations is not well understood.

INTRODUCTION

Studies of river connectivity usually focus on the whole river **network**.

Population or habitat connectivity indices were developed for **terrestrial** landscapes.

Fish **metapopulation** connectivity has different properties due to the **dendritic** structure of rivers

Plan de Recuperación, Transformación

a) Simple representation of the connectivity between habitats (in this case, forests); b) simplified river basin, with a fish metapopulation and their connections through the river network.

OBJECTIVES

1. Develop an **index** of easy application to study the **fragmentation** of potamodromous fish **metapopulations**.

2. Apply it to assess the **suitable habitat** connectivity of four metapopulations from the **Iberian Peninsula**.

R+D+i for sustainable development

Plan de Recuperación, Transformación y Resiliencia

METHODS

Dendritic Connectivity Index (DCI), modified to consider populations as the analysis unit instead of river segments.

The new Population Connectivity Index (PCI) considers:

- Probability of dispersal: 0-1 probability assigned according to literature and the dispersal capability of fish species that depends on size and swimming capability.
- Distance between populations.
- Cumulative passability of dams.

Four Iberian fish species were selected.

Large dams (> 1 hm³)

PD	Fish characteristics	Iberian examples
0.9	High swimming and leaping capacity	Salmonids
0.8	Medium swimming and leaping capacity. Size ≥35 cm	Luciobarbus, Pseudochondrostoma
0.7	Medium swimming and leaping capacity. 25 cm \leq size < 35 cm	Barbus, Parachondrostoma
0.6	Medium swimming and leaping capacity. 15 cm \leq size < 25 cm	Iberochondrostoma
0.5	Medium swimming and leaping capacity. 10 cm \leq size < 15 cm	Phoxinus, Anaecypris
0.4	Medium swimming and leaping capacity. Size <10 cm	Aphanius
0.3	Benthonic. Low swimming and leaping capacity	Barbatula, Cottus, Cobitis

Año Jubilar Lebaniego

METHODS

Dispersal: exponential decay with distance.

- B_{ij}: product of barrier passabilities between populations i and j
 - Large dams: passability = 0

c_{ij}: product of the cumulative passabiliy and the probability of dispersal of the fish of interest, which depends on the probability of dispersal and de distance between populations i and j

DCl_P: connectivity index between all pair of populations which depends on passability and length of river occupied by the populations over the total river network

Maximum Prob. disp. River basin Family Species **IUCN** category (10 km) size (cm) Cobitidae Cobitis vettonica Endangered 13 0.3 Tagus Least 60** 0.9 Salmonidae Salmo trutta Ebro Concern* Cyprinidae Luciobarbus comizo Least Concern 100 0.8 Tagus Anaecypris 0.5 Cyprinidae Endangered 10 Guadiana hispanica

* Vulnerable in Spain.

** Freshwater form.

$$B_{ij} = \prod_{m=1}^{n} p_m$$

М

$$c_{ij} = B_{ij} P D^{d_{ij}}$$

$$DCI_{P} = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} \frac{l_{i}}{L} \frac{l_{j}}{L} * 100$$

METHODS

Cantabrian Sea

France

The natural population connectivity was generally low.

Dams significantly reduced the connectivity between populations.

Año Jubilar Lebaniego 2023+2024

				Natural populations			Fragmented populations		
River basin	Species	PD	Total pop length	Number of pops	Mean pop length	PCI	Number of pops	Mean pop length	PCI
Tagus	Cobitis vettonica	0.3	845.82	10	84.58	20.09	29	29.17	14.36
Tagus	Luciobarbus comizo	0.8	2520.32	70	36.00	47.48	120	21.00	16.48
Guadiana	Anaecypris hispanica	0.5	4468.79	117	38.19	7.95	174	25.68	2.59
Ebro	Salmo trutta	0.9	8961.47	89	100.69	19.3	222	40.37	2.19

RESULTS

River basin	Fish species	Name	Longitude	Latitude	PCI Increment (points)
Tagus	Luciobarbus comizo	José María De Oriol	-6.8899	39.7267	13.75
Tagus	Luciobarbus comizo	Encín	-6.4278	39.9554	2.41
Tagus	Luciobarbus comizo	Santa Marta De Magasca	-6.0784	39.5221	1.43
Tagus	Luciobarbus comizo	Torrejón Tiétar	-5.9891	39.8441	0.57
Tagus	Luciobarbus comizo	Torrejón Tajo	-5.9836	39.8362	0.48
Tagus	Cobitis vettonica	Besagueda	-7.0778	40.1414	0.97
Tagus	Cobitis vettonica	Rivera De Gata	-6.6325	40.1340	0.79
Tagus	Cobitis vettonica	Jerte	-6.0407	40.0592	0.14
Tagus	Cobitis vettonica	Gabriel y Galán	-6.1301	40.2243	0.13
Tagus	Cobitis vettonica	Manufacturas Béjar	-5.7464	40.3951	0.11
Ebro	Salmo trutta	Cereceda	-3.4676	42.7867	0.26
Ebro	Salmo trutta	Leiva	-3.0501	42.5053	0.23
Ebro	Salmo trutta	Cillaperlata	-3.3575	42.7840	0.11
Ebro	Salmo trutta	Oliana	1.2970	42.0933	0.08
Ebro	Salmo trutta	Ullivarri	-2.6124	42.9291	0.08
Guadiana	Anaecypris hispanica	Mendoza	-4.9255	38.7054	0.78
Guadiana	Anaecypris hispanica	La Colada	-5.0112	38.5469	0.25
Guadiana	Anaecypris hispanica	Castilseras	-4.7975	38.7417	0.16
Guadiana	Anaecypris hispanica	Caia	-7.1413	39.0022	0.05
Guadiana	Anaecypris hispanica	Aroche	-6.9764	37.9887	0.05

DISCUSSION

The PCI index can **quantify** the connectivity of fish metapopulations and the impact of each individual dam.

Less naturally fragmented fish populations are more vulnerable to dams.

The PCI can be used to **target** fragmentation **mitigation** actions. It can be modified to account for other types of barriers, spatiotemporal scales, budgets, etc.

It is important to know the **biology** and **dispersion capability** of fish species as well as the **distribution** of populations or suitable habitat at different scales.

A method for fish metapopulation connectivity evaluation and barrier removal optimization

Amaia A. Rodeles, Lide de Izeta, David Galicia, María Morán-Luis, Alexia M. González-Ferreras, Francisco J. Peñas, José Barquín, Rafael Miranda

Financiado p la Unión Euro NextGeneration U

