

Resolving recruitment bottlenecks for the critically endangered European eel

Olle Calles & Johan Watz River Ecology and Management (RivEM) Karlstad University

🔀 @RivEM_Karlstad

rivem@kau.se

© Jörgen Wiklund

Figure 1. Trends in the abundance of glass eel arriving at the European continent Data: ICES, 2018a. Tentative linear trend lines have been added for 1950–1982, 1982–2011 and 2011–2018. Note the logarithmic scale of the vertical axis.

GLOBAL THREATS FOR MIGRATING FISH

Eel migration and river fragmentation

> Så påverkar människan ålen Illustration: © Zara Olsson

Win-win solutions for hydropower and nature

Win-win main findings

- Higher probability of eel occurrence upstream nature-like fishways, than dams fitted with eel ramps, technical fishways and dams without FPSs (Tamario *et al.*, 2019)
- In the experiment on eel substratum selection, 40% of the eels passed in lanes with studded substratum, whereas only 21 and 5% passed using open weave and bristle substrata respectively (Watz et al., 2019) (Validated in the field)
- Ramps positioned by the bank with **low water velocities** caught the most eels, but proximity to the dam had no effect on performance (Watz *et al.*, 2019).

Tamario et al. 2019, Aquatic Conservation

Win-win main findings

- Higher probability of eel occurrence upstream nature-like fishways, than dams fitted with eel ramps, technical fishways and dams without FPSs (Tamario *et al.*, 2019)
- In the experiment on eel substratum selection, 40% of the eels passed in lanes with **studded substratum**, whereas only 21 and 5% passed using open weave and bristle substrata respectively (Watz *et al.*, 2019) (Validated in the field)
- Ramps positioned by the bank with **low water velocities** caught the most eels, but proximity to the dam had no effect on performance (Watz *et al.*, 2019).
- How important are ramp design, hydrodynamics and phenotypic variation for ramp performance?

Optimized eel passage solutions

Olle Calles, Johan Watz, Dennis Leandersson, Johan Höjesjö, Magnus Lovén Wallerius, Pernilla Hanson, David Aldvén & Anders Nilsson

Havs och Vatten myndigheten

LÄNSSTYRELSEN Västra götalands län

Grant 52096-1

Eel ramp designs

Design and flows - Setup

Lovén Wallerius *et al.,* in prep.

Design and flows - Setup

- ✓ 30° ramp inclination
- ✓ 12.5° lateral tilt
- ✓ 4 h low light period
- ✓ 11 °C WT

Optimized passage project

• Passage performance for designs and flows (2x2):

 \rightarrow Plunging attraction flow (1.0 L/min)

 \rightarrow Laterally flat vs. v-shaped

 \rightarrow Low vs. high flow (3.0 vs. 9.0 L/min)

 \rightarrow 15 eels 12 h overnight (N = 2 x 15 x 25 = 750)

• Passage performance and phenotype:

 \rightarrow Individual exploratory behavior (OFT)

 \rightarrow Size

Optimized passage project

• Passage performance for designs and flows (2x2):

 \rightarrow Plunging attraction flow (1.0 L/min)

 \rightarrow Laterally flat vs. v-shaped

 \rightarrow Low vs. high flow (3.0 vs. 9.0 L/min)

 \rightarrow 15 eels 12 h overnight (N = 2 x 15 x 25 = 750)

• Passage performance and phenotype:

 \rightarrow Individual exploratory behavior (OFT)

 \rightarrow Size

Exploratory behavior - Setup

Open field test (OFT)

Python & YOLOv3 object detection algorithm

Exploratory behavior - Results

Open field test (OFT)

> Average OFT score 405.1 ± 224.4 cm (mean score ± SD)

Ramp experiment - Results

- Climbing probability (Binomial GLMM):
 - 29.5% climbed higher at low flow
 - Decreased with distance moved in OFT (*cf.* Mensinger *et al.,* 2021)

Flow - High - Low

Figure 2. Predicted probabilities estimating how score in OFT affected climbing for eels in high flow (solid line) and low flow (dashed line).

Lovén Wallerius *et al.,* in prep.

Ramp experiment - Results

High Low

- Ramp type and flow:
 - Low flow: higher overall climbing success (not size-dep.)
 - High flow: preference for V-shaped ramps

Figure 3. The cumulative number of eel climbs for laterally flat and V-shaped ramps under the two different treatment flows (dark grey = low flow, and light grey = high flow).

Lovén Wallerius *et al.,* in prep.

Ramp experiment – Field-validation

Silver eel passage experiment

Thanks for listening

Illustrations: Jennifer Clausen

Questions?

© Jonathan Larsson