IUP Institut für Umweltplanung

Weir Management and the Impact on Peak Floods and Sediment Flushing as Key Factors for the Upper Isar Alluvial Dynamics

Free Flow River Conference

Carmen Rethschulte | Institute of Environmental Planning – Working Group: Nature Conservation and Landscape Ecology | Leibniz University Hannover

The Upper Isar

- Germany's (Bavaria) last near-natural wild river
- biodiversity hotspot with outstanding nature conservation significance
- Nature conservation area, NATURA 2000 area

Anthropogenic Interventions & Hydropower Generation

- construction and commissioning of Walchensee power station (storage plant), since 1924 abstraction of Isar water at "Krün Weir"
- total water abstraction until 1990
- since 1990 a residual water flow is permitted (summer: min. 4,8 m³/s, winter: min. 3 m³/s)
- regular gravel/sediment extraction behind Krün Weir for flood protection

Intervention of geomorphological basis, bedload and water regime → natural floodplain dynamics is being affected

(aerial photos: Bayer. Landesvermessungsamt & WWA Weilheim)

Part of the Walchensee system: "Krün Weir"

The Walchensee system

Problem: Development of the floodplain and alluvial vegetation

Problem: Development of the floodplain and alluvial vegetation

1. Period: natural discharge	2. Period: water abstraction (Start 1924)	3. Period: wate (since 1990)	er abstraction with residual flow (summer: 4,8 m³/s, winter: 3 m³/s)	
section II				

Problem: Development of the floodplain and alluvial vegetation

Free Flow River Conference | Ecology and hydromophology of free-flowing rivers | 16.04.2024

dense willow shrubs

Problem: Silt deposits

Problem & Objective

Problematic developments continue to this day

Affects above all the valuable habitat types and species, like habitat types 3220, 3230 and 3240

Problem & Objective

Problematic
developments
continue to this day

key factor = floodplain dynamic

Affects above all the valuable habitat types and species, like habitat types 3220, 3230 and 3240

(How) can the floodplain dynamics be improved by changing the weir operation of the Krün weir?

Key factor discharge: before residual flow

 priority: max. water abstraction

reservoir flushing, if discharge > max. water abstraction or risk of sediment entering in diversion canal

Key factor discharge: with residual flow

reservoir flushing, if discharge > sum of residual water flow + max. water abstraction or risk of sediment entering in diversion canal

iup Institut für Umweltplanung

Analysis of the potential to promote the discharge regime

- Classification of the discharge according to 4 levels of impact:
 - Class 1: Q = < 20 m³/s
 - Class 2: Q = 20 < 30 m³/s
 - Class 3: Q = 30 < 40 m³/s
 - Class 4: $Q = \ge 40 \text{ m}^3/\text{s}$

bankfull, bedload-— transporting, bedforming

Analysis of the potential to promote the discharge regime

Analysis of the potential to promote the discharge regime

Analysis of the potential to promote the discharge regime

Discharge gauge station Mittenwald	Days of the year 2021 [%]	Discharge gauge station Mittenwald	Days 1970- 2023 [%]
< 20 m³/s	84,7 %	< 20 m³/s	86,2 %
20 - < 30 m³/s	14,3 %	20 - < 30 m³/s	11,0 %
30 - < 40 m³/s	0,5 %	30 - < 40 m³/s	2,2 %
≥ 40 m³/s	0,5 %	≥ 40 m³/s	0,6 %

Potential bedforming discharges =

Potential of discharge regime

The aim must be to increase bedload and discharge dynamics

- > We need changes to the weir operation at Krün weir:
 - Change from priority "max. discharge volume walchensee abstraction" and "operational flushing"

Allow all bedforming discharge to flow freely!

Conclusion

- continuing operation as before = loss of habitat for valuable species
- fundamental problems need to be addressed: more bedload and transportable runoff
- reservoir flushing not for operational reasons, replaced by a free flow of all bed forming discharges
- Imit values must be determined by numerical sediment transport modeling
- > Dynamic habitats require dynamism!

Thank you for your attention!

Carmen Rethschulte | rethschulte@umwelt.uni-hannover.de